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Abstract

To simulate metal!forming processes\ one has to calculate the stressÐstrain state of the metal\ i[e[ to solve
the relevant boundary!value problems[ Progress in the theory of plasticity in that respect is well known\ for
example\ via the slip!line method\ the _nite element method\ etc[#\ yet many unsolved problems remain[ It
is well known that the slip!line method is scanty[ In our opinion the _nite element method has an essential
drawback[ "No one is against the idea of the discretization of the body being deformed and the approximation
of the _elds of mechanical variables[# The results of calculation of the stress state by the FEM do not satisfy
Newtonian mechanics equations "these equations are said to be {{softened||\ i[e\ satis_ed approximately# and
stress _elds can be considered {{poor|| for solution of the subsequent fracture problem[ We believe that it is
preferable to construct an approximate solution by the FEM and {{soften|| the constitutive relations "not
Newtonian mechanics equations#\ especially as\ in any event\ they describe the rheology of actual deformable
materials only approximately[ We seem to have succeeded in _nding the solution technique[

Here we present some new results for solving rather general boundary!value problems which can be
characterized by the following] the anisotropy of the materials handled^ the heredity of their properties and
compressibility^ _nite deformations^ non!isothermal ~ow^ rapid ~ow\ with inertial forces^ a non!stationary
state^ movable boundaries^ alternating and non!classical boundary conditions\ etc[

Solution by the method proposed can be made in two stages] "0# integration in space with _xed time\ with
an accuracy in respect of some parameters^ "1# integration in time of certain ordinary di}erential equations
for these parameters[

In the _rst stage the method is based on the principle of virtual velocities and stresses[ It is proved that a
solution does exist and that it is the only possible one[ The approximate solution {{softens|| "approximately
satis_es# the constitutive relations\ all the rest of the equations of mechanics being satis_ed precisely[ The
method is illustrated by some test examples[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Recent papers and books published "see e[g[ Chenot et al[\ 0884^ Zhong\ 0882^ Gerhardt\ 0878^
Pozdeev et al[\ 0875# speak of the state of the art in the calculation of the stressÐstrain state in
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metal forming with application of the _nite element method "FEM#[ Naturally\ the calculation is
approximate\ and\ notwithstanding the progress in computer hardware\ the matter of topical
importance is to _nd a better method of approximate solution[

To calculate the stressÐstrain state in metal forming and\ on the whole\ in deformation mechanics
is to solve the boundary value problems of continuum mechanics[ Continuum mechanics equations
may be schematically divided into three types] kinematic equations\ dynamic equations and
constitutive relations[ The characteristic feature of the majority of the above mentioned works is
the fact that they satisfy the kinematic equations exactly\ satisfy the constitutive relations\ but\
strictly speaking\ they do not satisfy the dynamic equations[ In fact\ the solution is constructed in
velocities and displacements\ e[g[\ by Lagrange|s\ Jourdain|s\ Markov|s principles or Galerkin|s
method[ Then\ by the ~ow kinematics "in the case of Markov|s principle\ by kinematics and mean
normal stress#\ stress tensor _elds are found by means of constitutive relations[

Since\ for example\ direct variational methods are applied for the solution\ the stress _elds
obtained do not satisfy the dynamic equations\ namely\ the di}erential equations of balance "or
motion\ if the ~ow has mass inertial forces#\ the stresses do not accurately satisfy the boundary
conditions in stresses "therefore one can speak of {{softer|| satis_ability#[ Certainly\ as the number
of variation parameters grows\ and:or if more suitable coordinate functions are used\ the dis!
crepancy in the satisfaction must decrease[ Even the solution of very complicated problems by the
FEM "as in Chenot et al[\ 0884^ Zhong\ 0882^ Gerhardt\ 0878^ Pozdeev et al[\ 0875# seem very
similar[ The man has accumulated a certain experience in body forming\ and the visualization of
the kinematic solution results "displacements\ velocity _elds and even strain distribution# creates
the impression of safety[ However\ the man has little physical notion of stress _elds\ and paper
authors seldom bring their results to the analysis of the stress state obtained[ We do not state that
this method of approximate solution is worse than the one described in the present paper\ but we
are of the opinion that the latter method deserves consideration[

By the alternative method\ we seek the solution in the form of kinematic _elds "of velocities\
displacements\ etc[# satisfying all the kinematic equations and in the form of stress _elds satisfying
all the dynamic equations[ Since the solution is still approximate\ the {{softening|| falls on the
constitutive relations "as the accuracy of the approximate solution grows\ the discrepancy in the
satis_ability decreases#[ It should be noted that the constitutive relations are always approximate
and found from experiments where there are experimental errors\ therefore this way of {{softening||
seems more preferable to the author of this paper[

The idea of simultaneous varying the stress and strain states with {{softening|| only the consti!
tutive relations is not new[ It was proposed independently by Kolarov et al[ "0868# and Kolmogorov
"0856# and advanced considerably in Kolmogorov "0869#\ Unksov et al[ "0872#\ Kolmogorov
"0875#\ Kolmogorov and Lapovok "0881#\ Unksov et al[ "0881# and Fedotov "0889#[

1[ Correct formulation of the general boundary!value problem

The boundary!value problem consists in the integration of the system of equations of continuum
mechanics with respect to the variables describing the kinematic ~ow and the stress state for certain
boundary and initial conditions[ Some of these equations "the so!called constitutive relations# and
the boundary conditions are formulated from experiments for the speci_c class of problems
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prescribed\ particularly\ those of metal!forming mechanics^ any formulation must however be
correct[ A correct formulation is as follows[

Let a material body with volume V undergo _nite plastic deformation[ Let the constitutive
relations be given [M $ V[ They can be given in any form "e[g[\ in volume Vp "part of V# they
describe plastic deformation\ and in volume Ve\ the rest of the volume which is elastic\ etc[#[ We
assume that\ under conditions of developed forming\ the material being formed possesses rheonom
properties\ the constitutive relations of which are known functionals of the history of deformation
development with time\ temperature u and density r\ etc[ However\ at every _xed moment of time
t\ including the one under study\ they turn into some known tensor functions\ together with their
inverse functions

sij � sij"ekl#\ eij � eij"skl#^ "0#

s � s"j#\ j � j"s#[ "1#

Here\ sij and eij are the components of the stress deviators and the deformation velocities^ s and j

are mean normal stress and the rate of relative volume change\ respectively^ ekl and skl form a set
of deviator components which appear in the functions "0# as arguments[ Among the arguments in
the functions "0# and "1# there may be any characteristics of the stress and strain states "e[g[\
derivatives s¾ij\ s¾ \ etc[#\ but in "0# and "1# there are arguments that are principal ones for the
following reasoning[ The coordinates adopted are Lagrangian ones[ Let the functions "0# and "1#
satisfy the conditions

1sij:1ekl = i�k
j�l

× 9 "2#

1s:1j × 9[ "3#

So\ constitutive relations at any _xed instant of time t*functions "0# and "1#*must be di}er!
entiable with respect to the mentioned arguments and have inverse functions^ for the functions\
conditions "2# and "3# must be satis_ed because they express the known properties of metal
viscosity[

Let the solution sought be in the velocity _elds vi\ which is continuous in the coordinates of V\
and in the V surface stress _elds\ f i � sijnj[ Here sij are the components of the stress tensor^ n is
the unit normal to the surface[

Suppose the body undergoing to deformation\ have a volume V\ bounded by a surface S which
consists of the parts Sv\ Sf and SS^ the boundary conditions on them are assumed to be as follows]

[M $ Sv\ vi � v�i ^ "4#

[M $ Sf\ fi � sijnj � f i

�^ "5#

[M $ SS\ vv � v�v\ ft � ft" fv\ vS#i[ "6#

Here\ v�i \ f i

�\ v�v are given functions "everywhere marked with an asterisk# of coordinates on the
surface S and time\ t^ vS is the tool slip vector and i � vS:vS^ v�v and fv are the normal "to the surface
S# components of vectors^ ft � ft" fv\ vS# is the known friction law[ The friction law may be the
functional of the particle|s trajectory on the surface SS\ but at a _xed moment in time t\ it must be
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represented by a known function\ resolvable with respect to vSðvS" fv\ ft#Ł\ and it must satisfy the
following condition]

1ft:1vS × 9[ "7#

In the function ft � ft" fv\ vS# any other quantities "e[g[\ uS � Ðt
9 vS dt\ the displacement of a particle

on SS# can be present as arguments[ Conditions for the continuity of vi and f i must be satis_ed on
the boundaries "lines that\ generally speaking\ are not known# between Sv\ Sf and SS[ The relation
"7# refers to the viscous properties of the metal and the lubricant[

Of course\ boundary conditions should be given for the temperature part of the problem\ but
we do not deal with the temperature part in the present paper[

Finally\ suppose that [M $ V distributed mass forces `�i are given[
Suppose\ to integrate in time\ for every material particle M $ V\ the following initial conditions

being given "at t � 9#]

[M $ V\ vi � v9
i \ sij � sij

9\ r � r9[ "8#

On the right\ marked by zero\ are the known functions of the coordinates[
Thus\ we have formulated the boundary!value problem for the mechanics of a body undergoing

deformation[
Consider the solution for this problem[

2[ The principle of virtual velocities and stresses\ and the integration of the boundary!value

problem in space

Consider an unspeci_ed but _xed instant of time t[ The integration of the boundary!value
problem at issue in space can be replaced by the equivalent task of solving the following variational
equation for the principle of virtual velocities and stresses]

dI � 9\ "09#

where

I � gV $g
e?ij

9

sij"e# de¦g
sij?

9

eij"s# ds¦g
j?

9

s"j# dj¦g
s?

9

j"s# ds¦r"wi−`�i #v?i% dV

−gSf

f i

�v?i dS−gSv

f i?v�i dS−gSS
$f i?v�i −g

v?si

9

f i
t"v# dv−g

f i?

9

vsi" f # df% ds[

Variation proceeds isochronously only with respect to virtual quantities that are marked in "09#
by a prime[ The summation is made over the indices i and j which appear in the upper limits of
the integrals and in the expressions under the integral sign[ Naturally\ the constitutive relations
must be such that the functional I in "09# "curly brackets# was di}erentiable[ The virtual v?i must
satisfy "side by side with the continuity in V and on S# the following conditions]

[M $ V\ dr:dt¦r div v? � 9^
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[M $ Sv\ v?i � v�i ^

[M $ SS\ v?v � v�v[ "00#

The virtual sij? must satisfy "side!by!side with the continuity of the surface stresses f i? � sij?nj in V
and S# the following conditions]

[M $ V\ 9is
ij?¦r"`i

�−wj# � 9\ sij? � sji?^

[M $ Sf\ sij?nj � f i

�[ "01#

Here wj refers to the acceleration of material particles[ Note that the virtual sij? and v?i satisfy all
the equations of continuum mechanics "which are linear in this case\ and which simpli_es the
practical application of the principle of virtual velocities and stresses#\ except for the constitutive
relations[

The functional I\ calculated for any virtual stressÐstrain state\ even entirely di}erent from the
actual one\ but with other conditions equal "i[e[ invariable quantities#\ is not negative and becomes
zero on achieving the absolute minimum at the actual state\ which is the solution of the boundary!
value problem at issue in space at a _xed time[ The quantities I\ calculated for some virtual state
described by the _elds v?i and sij?\ expresses a discrepancy in their satisfying the constitutive relations[

The solution of the variational problem "09# does exist and is unique[ In view of equivalency
there exists "and it is unique# a solution "named {{actual _elds|| vi and sij# for the following problem]

9i ðsij"ekl#¦s"j#`ijŁ � r"wj−`j

�#^

eij"skl#¦j"s#`ij:2 � "9ivj¦9jvi#:1 "02#

with the boundary conditions "4#Ð"6#[ Here 9i is a covariant derivative operator^ `ij are metric
tensor components^ ekl �"9kvl¦9lvk#:1^ j � jkl`

kl^ skl � skl−s`kl and s � skl`kl:2[

3[ An approximate solution for the general boundary!value problem as a whole

The approximate solution at an unspeci_ed instant of time t will be sought by using the principle
of virtual velocities and stresses in the form

v?i � s
n

k�0

akivki"x#^

sij? � s
m

k�0

bij
ks

ij
k "x#[ "03#

Here\ x are Lagrangian coordinates^ aki and bij
k are variable coe.cients "at _xed t and\ generally

speaking\ functions of time#^ vki"x# and sij
k "x# are known suitable functions of coordinates "in the

right hand part there is no summation over the repetitive indices i\ j#[ The suitable functions are
selected so that v?i and sij? are virtual[

The variation eqn "09# will turn into two groups of equations\ thus
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gV $s
ij"e?#

1e?ij
1aki

¦s"j?#
1j?
1aki

¦r"wi−`i

�#
1v?i
1aki% dV

−gSf

f i

�
1v?i
1aki

dS¦gSS

fti"v?S#
1v?si
1aki

dS � 9\ k � 0\ [ [ [ \ n^

gV $eij"s#
1sij?

1bij
k

¦j"s?#
1s?

1bij
k% dV−gSV

v�i
1f i?

1bij
k

dS−gSS
$v�i

1f i?

1bij
k

−vi" f?t#
1f i

t?

1bij
k % dS � 9[ "04#

Here\ indices i and i j\ appearing in the denominator of the partial derivatives do not participate in
the summation[

Note that v � 1v:1t\ v � 1x:1t and r � r9 det >1xi9:1yj>:det >1xk:1yl>\ where r9 and r are the
initial and current density of the material\ respectively\ xi9 and xk are initial and current Eulerian
coordinates of the particle\ yj and yl are their Lagrangian coordinates[ Thus\ relations "04# mean
that the evolutionary problem concerning the change in the stress state of the body and its
kinematics is now reduced to the integration of the following two groups of ordinary di}erential
equations "written schematically#]

a¾ � F0"a\ b\ b¾#^

F1"a\ b\ b¾# � 9 "05#

with the initial conditions "8#[ The question of the existence and uniqueness of the solution are
taken to be settled mathematically[ Here\ in "05#\ it is assumed as an example\ that the constitutive
relations connect deformation velocities and stress velocities[ The result of the solution of the
system "05# approximately solves the problem as a whole\ thus\ "03# will now have the following
form]

vi � s
n

k�0

aki"t#vki"x#^

sij � s
m

k�0

bij
k "t#sij

k "x#[ "06#

An approximate solution by the method described will now be presented[

4[ Some particular cases and exceptions to the rules in sections 2 and 3

The material treated is often assumed to be isotropic\ and the stress and velocity deviators*
similar[ In this case constitutive relations "0#\ all in all 09\ including inverse functions\ are written
through invariants only as two functions]

T � T"H#^ H � H"T#[ "07#

Here T is the intensity of the tangential stresses and H is the intensity of shear strain velocities[
Then\ in eqn "09#\ the _rst ten items should be substituted for as follows]
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g
e?ij

9

sij"e# de¦g
sij?

9

eij"s# ds � g
H?

9

T"h# dh¦g
T?

9

H"t# dt[ "08#

Often the material does not display viscous properties\ in which case the constitutive relations
"1#\ "07# and the friction law in "6# at a _xed instant of time t will certainly have no j\ H or vS

among the arguments and\ consequently\ there will be no inverse functions[ The variational eqn
"09# will be simpler in this case*

d 6gV

ðTH?¦sj?¦r"wi−`i

�#v?iŁ dV

−gSf

f i

�v?i dS?−gSv

f i?v�i dS−gSS

" f i?v�i −f i
tv?si# dS7� 9^ "19#

the following conditions are however added to conditions "01# imposed on the virtual sij?]

[M $ V\ T? � T\ s? � s^

[M $ SS\ f i
t? � f i

t[ "10#

Here the right hand parts are stresses arrived at by the instant of time t[
One more simpli_cation pertains to the incompressibility of the material[ In this case the second

item in "19# will be absent\ and the _rst condition in "00# will assume the form

[M $ V\ j? � 9[ "11#

5[ On the fragmentation of the bodies under deformation

In the above!described solution of the boundary!value problem it was assumed "as usual# that
the material volume V remains continuous during the deformation\ that it does not become divided
into parts\ and that no macroscopic holes or macro!cracks appear in it\ i[e[ there is no macroscopic
fragmentation of the body under deformation[ The considerations and the solution of the bound!
ary!value problem were valid "in as far as continuum mechanics is valid# until the beginning of the
macroscopic fragmentation\ i[e[ the loss of continuity "at instant tp#[ At the same time this instant
can be considered as the beginning of a new stage\ i[e[ a new solution for a new boundary!value
problem\ because\ on the new surfaces created\ there appear additional boundary conditions\
which require a new statement of the boundary!value problem[ The second stage will continue
until further new surfaces appear\ and so on[

The instant tp at which the fragmentation starts and the instants of further macro!discontinuities
can be determined by means of fracture theory "see e[g[ Unksov et al[\ 0872#\ supplied with some
new statements[ According to this theory\ in every material particle of the body under deformation\
accumulation of damage c takes place[ By the instant of time t\ c"t# is calculated based on
kinematic relations[ For that purpose\ _rstly\ we solve the appropriate boundary!value problem[
Secondly\ we specify "or _nd from special experiments# plastic characteristics of the body under
deformation[ Damage c is calculated for every material particle[ For that purpose\ on the trajectory
of its motion\ we specify separate sections of monotonic deformation[ Within the section\ the
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components of the particle deformation velocity tensor do not change the sign[ We indicate
t0\ t1\ [ [ [ \ tn−0*the instants at which the tensor component changes sign "transition through zero
of at least one component#[ At the _rst section "t9 ¾ t ³ t0# damage is determined as

c"t# � c0"t#\

dc0

dt
�

H"t#
lpðk0"t#\k1"t#Ł

\ c0"t9# � 9^

at the second section t0 ¾ t ³ t1\

c"t# � ðc0"t0#Ła0¦ðc1"t#Ła1\

dc1

dt
�

H"t#
lpðk0"t#\k1"t#Ł

\ c1"t0# � 9^

at the n!th section tn−0 ¾ t ³ t\

c"t# � s
n

i�0

ca0
i \

dcn

dt
�

H"t#
lpðk0"t#\k1"t#Ł

\ cn"tn−0# � 9[

Firstly\ here we have the results of solving the boundary!value problem] H � H"t# is the intensity
of shear deformation velocity^ k0 � k0"t# and k1 � k1"t# are dimensionless independent invariants
of the stress tensor ðk0 � s:T\ k1 � 1"s11−s22#:"s00−s22#−0\ where s is the mean normal stress
and T is the intensity of the tangential stresses^ s00 − s11 − s22 are principal normal stressesŁ[
Secondly\ we have the plastic characteristics of the body under deformation\ found from exper!
iments] lp � lp"k0\ k1# refers to plasticity values and ai � ai"k¹ 0\ k¹ 1# are the values of the function
a � a"k0\ k1# at the i!th section of the monotonic deformation[

By the instant of the fracture "t � tp#

c"t# � c"tp# � 0\ "12#

and the body is saturated with microdamage "which\ however\ does not appear when solving the
boundary!value problem#\ the material becomes embrittled and is about to form a macro!crack
"body fragmentation start#[ Condition "12# marks the end of solving the boundary!value problem
within the accepted statement and the beginning of a new stage\ i[e[\ new solution[ How can we
_nd tp\ the macro!break spot and formulate the boundary conditions on the new surface<

The calculation of damage by the given algorithm proceeds after integration of ordinary di}er!
ential equations in time\ allowing one "as is described above# to obtain an approximate solution
for the boundary!value problem[ At every instant of time t\ we can solve the problem of seeking
the x coordinates of the points in the body volume V\ at which the damage is maximum

max
x$V

ðc"t#Ł[ "13#

The instant of time t � tp will be determined when the maximum value of c\ according to "13#\
achieves unity\ i[e[
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max
x$V

ðc"tp#Ł � 0[ "14#

Simultaneously\ the point "or points# can be found where the macro!crack appears[
How will the surface of the macro!crack be oriented< We can assume that\ if plastic deformation

precedes fracture\ then\ at the instant t � tp\ the crack will be oriented along the spots of maximum
tangential stresses[ The crack will have _nite dimensions owing to the continuous change of c in
the volume V[ The dimensions can be calculated from solving a new boundary!value problem and
calculating the stressÐstrain state around the crack[

At the spots of maximum tangential stress\ the latter and the normal ones will be as follows
"respectively#]

tn � 0
1
"s00−s22#^

sn � 0
1
"s00¦s22#[ "15#

If\ at t � tp\ in the point with c � cmax−0\ sn − 9\ then there appears a crack with the {{edges||
free from surface stresses\ i[e[\ tn � sn � 9[ On the edges of the crack evolved\ there arises impact
o}!loading to the value of

Dtn � tn\ Dsn � sn[ "16#

If\ at t � tp\ in the point with c � cmax � 0\ we have sn ³ 9\ then there appears a crack on split
with the edges not free from surface stresses[ On the edges there occurs an impact unloading of
the value of

Dtn =tn =−m=sn =\ "17#

if it is supposed that friction between the split crack banks is according to Coulomb "m is friction
coe.cient#[ In the further solution the split crack banks should be viewed as surfaces with sliding
friction[
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